USE OF THE METHOD OF SUCCESSIVE INTERVALS
TO SOLVE NONLINEAR PROBLEMS OF
HEAT CONDUCTION

N. V. Shumakov and B. S. Solov'ev UDC 536.24.02

The possibility of solving a nonlinear problem of heat conduction by the method of succes-
sive intervals is considered. A description is given of the algorithm realizing this method,
The effectiveness of applying the method is discussed and a2 comparison with the mesh method
is presented.

A number of questions associated with heat transfer in solids whose thermophysical parameters
depend strongly on the temperature (as an example, the coefficient of heat conduction of silicon varies
170- and of germanium 60-fold in the 0-1000°K range) arises in the investigation of the heat modes of
radioelectronic apparatus (REA). The necessity to compute the temperature field of semiconductor in-
struments requires the solution of 2 nonlinear problem of heat conduction, Numerical methods [1] are
ordinarily used to solve such problems.

Let us examine the possibility of using the method of successive intervals [2] to solve the nonlinear
problem,

It is known that the solution of an incorrect problem about the temperature field in the following
formulation:
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when qy(r) and t(x, 7) must be found, results ina Volterra integral equation of the first kind:
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Some numerical method is also used ordinarily to determine the temperature field by means of this
solution.

But the solution of the problem (1)~{4) can be obtained by using the solution in successive intervals
for the temperature field in the wall during a process of nonstationary heat transmission through it. For
a zero initial temperature distribution, this solution has the following form [3]:
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Hence, the magnitude of the desired heat flux g,(r) will be determined as follows in the first interval:
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in all the following intervals for 2= n= N, Here it is assumed that y = x/R and w = AFo. Having deter~
mined the whole sequence of values qj i, or, inother words, having determined the function gy(r), the tem-
perature field of a plate, including the temperature at x = 0 also, can be determined by means of the solu-
tion (6). Therefore, the solution of the nonsymmetric problem of heat conduction in successive intervals
permits computation of the temperature field when'the heat-exchange conditions are known only on one
body surface (plate) in the form (3)-{4).

This singularity of the solution in successive intervals can be used to obtain an approximate solution
of the nonlinear problem of heat conduction which can be formulated as follows:
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It is required to determine the temperature field in a plate, including t{0, 7) and the heat flux q,(r) passing
through the surface x =0, ‘

To obtain the desired algorithm of the solution of the nonlinear problem (9)-(12) let us partition the
body (plate) into a number of domains (Figs.1and?2) and starting from the given temperature on the boun-
dary of the first domain let us select the value of the thermophysical parameters in this domain. Then,
using the solution of the incorrect problem (1)-(4) in successive intervals, let us determine the tempera-
ture and heat flux on the second boundary of the spatial domain in the given time interval. Furthermore,
let us find the temperature and heat flux on the boundary of this same spatial domain for the next time in-
terval. Performing analogous calculations n times, we obtain the appropriate boundary conditions for the
second spatial domain. The thermophysical characteristics in this domain are selected on the basis of
the temperature obtained on the boundary of the second spatial domain. Repeating this iteration process
over the whole set of spatial domains, we obtain the solution of the nonlinear problem of heat conduction.
The computational relationships obtained by using the method considered above are the following:
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Fig. 1. Infinite plate with nonsymmetric boundary condi-

tions,
Fig. 2. Partition scheme for the domain,
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forl=n=<Nand 1l =i=1. Since the process of calculation using the formulas presented above is an
iteration, then the question of the stability of the method used arises, which reduces to the question of
the stability of the inverse problem in successive intervals with boundary conditions of the second kind.
It is known [4] that the magnitude of the selected time interval influences the stability of such a solution
and a limit wpyj, = 2%/2 exists (z is the relative distance from the heat-exchange surface) below which the
stability of the solution is spoiled. In this case wmin = 0, i.e., the solution of the system (9)~(12} in
successive intervals is absolutely stable.

To verify the effectiveness of this approach to the solutions of nonlinear problems from the viewpoint
of accuracy of the calculations and machine time expenditure, a problem in the incorrect formulation (1)~
(4) was computed by the mesh method and by the method of successive intervals, The solution of the linear
problem of heat conduction, when the boundary conditions are given in the following formulation:
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was hence used as the standard solution. The computation was carried out for a body with the character-
istics R = 0.05 m; A = 69.78 W/(m-deg); a = 0,1667-107¢ m?/sec; q, = 17400 W/m?, b = 0.007 sec™’.

The computations carried out showed that for a w = 0,1 duration of the time interval and partition of
the body into four spatial domains, the error in reproducing the desired boundary conditions after the
seventh time interval is tenths and hundredths of a percent. While errors on the order of 1% in

TABLE 1, Computation of the Boundary Conditions for x = 0

Mesh method (2 = 10) Method of successive intervals(z = 4)
: Fo==ne
g (%) 8¢s. % 1@ 8, % 4 (%) 8gs0 % 0, % &, %

0,1 92 88,0 | —1,91 | —1797,5 —32834 | 4387,7 9,53 9572,5
0,2 . 3836 38,6  —0,72 205,5; 54123 [—2376,1 | —8,41 1329,0
0,3 5910 5,8 0,83 58,5 —21424 718,6 5,84 { 1926
0,4 7140 | —38,8 2 29,8) 13401 | —190,5 2,26 33,7
0,5 8045 —31,3 3,87 18,9 3542 37,3 5,07 6,3
0,6 8783 | —25,2 5,22 13,4 7034 —6.,9 5,99 0,5
0,7 9420 —20,7 6,44 10,1 7286 1,8 7,20 —0,5
0.8 9982 —17,1 7,55 7,9 8144 0,4 8,22 —0,3
0.9 10485 | 14,3 8,55 6,4 8806 0,6 9,15 —0,2
1.0 10935 —12,2 9,44 5,3 9425 0,5 9,99 —0,2
1,6 12596 — 5,9 12,76 2.4 11701 0,2 13,08 —0,1
2,0 13578 | — 3,2 14,72 1,2) 13048 0,1 14,91 —0,0
2,5 14158 — 1,8 15,88 0,71 13845 0,1 15,99 —0,0
3,0 14447 - 1,1 16,45 0,4 14317 0,0 16,63 ©—0,0
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TABLE 2. Computation of the Boundary Conditions at x = 0

Method of suécéssive
Fo Mesh method for z intervals (z= 10)

Relative error in determining the heat~flux density A4 /q in %

z=10 z=20 T2=50 | z=100

0,5 — = 60,3 -
1,0 —73,3 —-64.0 —58,6 —56,8 —29,3
1,6 —27,6 —24,2 —22,1 —21,5 5,6
2,0 —13,4 —11,7 —10,7 —10,4 1,0
2,5 — 7,2 — 6,3 — 5,7 — 5,6 0.6
3,0 — 4,0 — 3,5 — 3,2 — 3,1 0,4
Relative error in determining the surface temperature t (0,7) in%
0,5 — — — — —50,3
1,0 42,8 37,9 35,0 34,1 4,8
1,5 11,9 10,5 9,7 9,4 — 1,3
2,0 5,3 4.7 4,4 4.2 — 0,4
3,0 1,5 1,4 1,2 1,2 — 0,2

reproducing the desired boundary conditions are reached in the mesh method for a 10 X 10 space—time
mesh only after 20-25 time intervals (see Table 1), the machine times expended in computations by both
these methods were equal.

However, for a w = 0.5 duration of the time interval, the accuracy of the computations by the suc-
cessive interval method for a partition into 10 spatial domains is greater than the accuracy of the mesh
method, even with a partition into 100 spatial domains (see Table 2), which is equivalent to a fourfold
gain in machine time.

The higher accuracy in reproducing the desired boundary conditions in the successive intervals
method as compared with the mesh method is evidently related to the fact that the initial differential
equation in the mesh method is replaced by finite differences, while a stepwise approximation of the func-
tions describing the time change in the boundary conditions in a given spatjal domain is made in the suc-
cessive-intervals method, hence the form of the initial differential equation remains unchanged for this
domain,

The use of the proposed approach to solve problems with sources and to process experimental data
for an essential temperature dependence of the physical parameters of the solid is the subject of a
separate paper.

NOTATION

t, temperature; x, coordinate; r, time; a, thermal diffusivity; A, coefficient of thermal conduc-
tivity; co, volumetric specific heat; gj, heat-fluxdensity; 7, variable of integration; AF(y, nw), refer-
ence function from [3].
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